
A LEO Satellite Email Gateway

Fabian Schulte
Grupo Bioingeniería y Telemedicina

ETSI Telecomunicación
Universidad Politécnica de Madrid

December 11, 2004

Contents

1 Introduction 3
1.1 The Project EHAS . 3
1.2 Low Earth Orbit Satellites . 4

1.2.1 Digital satellites . 4
1.2.2 Analog satellites . 4

1.3 A LEO gateway . 5
1.3.1 International gateway . 5
1.3.2 Isolated gateway . 5

2 Foundations 6
2.1 Email . 6

2.1.1 Envelopes and messages . 6
2.1.2 RFC-822-MIME Format . 6
2.1.3 Mail addresses . 7
2.1.4 Mail system components . 7

2.2 Amateur radio protocols . 8
2.2.1 AX.25 . 8

2.3 Pacsat file protocols . 8
2.3.1 FTL0 . 8
2.3.2 Pacsat file header . 9
2.3.3 Pacsat broadcast protocol . 10
2.3.4 Earth mail gateways . 11

3 Tools 12
3.1 sendmail . 12

3.1.1 Basics . 12
3.1.2 Smarthosts . 12
3.1.3 Routing with mailer tables 12
3.1.4 Interfacing with a mailer . 13

3.2 PFH . 13
3.3 Satellite message transfer . 14

3.3.1 Satellite tracking . 14
3.3.2 Uploading/downloading tools 14
3.3.3 Tools used in this project . 14

3.4 Linux and debian . 14

1

CONTENTS 2

4 Implementation 15
4.1 The Pacsat mailer . 15

4.1.1 Interface . 15
4.1.2 Implementation . 15
4.1.3 Interfacing with sendmail 16

4.2 The fromPacsat program . 18
4.2.1 Interface . 18
4.2.2 Implementation . 19

4.3 The structure of the gateway . 20
4.4 Installation . 20

4.4.1 PB/PG . 20
4.4.2 Pacsat gateway . 21

4.5 Future work . 22

5 Programs 23
5.1 toPacsat . 23
5.2 fromPacsat . 30
5.3 The test scripts . 35

Chapter 1

Introduction

1.1 The Project EHAS
The project “Enlace Hispanoamericano de Salud” (EHAS) is carried out by the Group
of Bioengineering and Telemedicine of the Technical University of Madrid and the
organization Engineers Without Frontiers. Its goal is to improve the medical care in
isolated rural areas in South America by installing a communication-network.

There are two kind of medical centers. In the Centros de Salud, which are situ-
ated in towns, work the doctors. They have medical equipment and usually access to a
telephone line. The smaller Puestos de Salud are dependent on each Centro de Salud
because they have an inferior infrastructure. The personal here often need to commu-
nicate with its Centro de Salud in order to do a diagnosis. Because of the bad access
situation and the absence of a telephone line, it is necessary to find another possibility
of communication.

The EHAS network connects all the Centros de Salud and the Puestos de Salud
with the Internet and makes communication possible via email. In order to achieve
this, the Puestos de Salud are connected with their Centro de Salud by VHF radio. The
Centros de Salud usually have telephone access with which a connection to the Internet
and the national coordination center is possible. They hold mailboxes for their Puestos
de Salud. In special cases, the Puestos de Salud are connected directly to this national
center by using HF radio.

Unfortunately, there are some Centros de Salud which do not have a telephone line
and where a connection by VHF radio is not possible. They are connected by using a
low earth orbit satellite (LEO). When this satellite is in view of a Centro de Salud it
receives the sent messages. As soon as possible it sends them to the NodoInternacional
in Madrid. Here the messages are downloaded and sent as emails on the Internet. In
the other direction emails with a destination of one of these Centros de Salud are first
sent to the NodoInternacional where they are forwarded to the satellite. At this point
they can be received from the satellite by the Centros de Salud and sent to the Puestos
de Salud.

Throughout this process the satellite HealthSat II is used. The connection via satel-
lite should only be used in special cases because of the high cost and because of the
high complexity of satellite communication.

With this network it is possible for the Puestos de Salud to have access to medical
documents and databases, to consult a doctor or to exchange important informations in

3

CHAPTER 1. INTRODUCTION 4

a short time. At the moment it is in use in Peru as a pilot project.

../image/topo.ps not found!

1.2 Low Earth Orbit Satellites
There are two kinds of Low Earth Orbit Satellites (LEO), analog ones and the newer
digital ones.

1.2.1 Digital satellites
Low Earth Orbit Satellites circle round the earth at a distance between 500 and 900 km
on a polar orbit. Because of this small distance they need to be very fast and therefore
are only visible 4 times a day for nearly 15 minutes. However you need only a power of
50W to contact them and to transmit information. They are typical cubics with a length
of about 23 cm and a weight of about 9kg. They consist of a receptor at usually about
145MHz, a transmitter at about 435MHz, a power supply and a computer with a RAM
large enough to store the information. The batteries can be recharged by a solar panel.
The protocol which is used for this connection is the AX.25, which is an amateur radio
version of X.25 at a speed of 9600bps.

The digital Pacsat satellites (a project that grew up from AMSAT, the Radio Am-
ateur Satellite Corporation) can store all the information (e.g. files) they receive until
it is downloaded by another ground station. Pacsat is a term to describe a digital store
and forward satellite.

For the transmission of files you need, besides a computer, hardware equipment,
which consists of a TNC, a transceiver, the antenna and a controlling unit. The TNC
(Terminal Node Controller) is connected to a serial port of the computer and to the
transceiver. It has a modem inside. The modem is necessary to transform the digital
information of the computer into analog signals, which the transceiver can send. This
transceiver receives the signals from the TNC and the controlling information for the
frequency shifting. Then it sends the signals to the antenna. The controlling unit of the
antenna is connected directly to the computer. It tracks the antenna.

1.2.2 Analog satellites
Besides the digital Pacsat satellites there are also analog satellites. Even though they
were the first LEO satellites in the sky, they are still used. Within their range they work

CHAPTER 1. INTRODUCTION 5

as a transponder to repeat voice signals immediately on another frequency without
storing them.

1.3 A LEO gateway
Communication via LEO satellites, as described in section 1.1, needs an appropriate
gateway. There are two kinds of gateways, one in the NodoInternacional in Spain and
the gateways in the Centros de Salud.

1.3.1 International gateway
This gateway should receive messages with destination of the Puestos de Salud as
emails from the Internet. Then it has to perform several steps to prepare the message
for uploading. These are transformation of the message into a format which the satel-
lite understand, compressing and encapsulation of the message and finally queueing it
to the uploading program.

To do the processing of the opposite direction, the gateway must look up in the
directory which contains the messages downloaded. Then it has to carry out the same
steps like above in turned order and to make sure that the email is sent correctly into
the Internet.

1.3.2 Isolated gateway
The Internet isolated gateway in the Centros de Salud is similar. It should take the
emails received by the VHF radio connection from the Puestos de Salud and transform
them in the same way like above. Also the transformation steps for the opposite direc-
tion are similar. At the end the gateway is responsible for the correct delivery to the
accounts of the corresponding Puestos de Salud, from where it can be transmitted via
the VHF radio connection.

Chapter 2

Foundations

2.1 Email

2.1.1 Envelopes and messages
An email consists of an envelope and the encapsulated message. The envelope is cre-
ated by the mailer which is responsible for delivery. Because there are different possi-
bilities to route an email there are also different envelopes corresponding to the needs
of the receiving mail transport agent. The envelope usually contains the recipient’s ad-
dress, the priority, information about security and perhaps the sender’s address. With
this information the mail transport agent can route the message. The following mes-
sage itself consists of a header and the body. The header holds the information about
the message, the body the real information for the recipient.

2.1.2 RFC-822-MIME Format
The old RFC-822 standard defines several header fields for an email[11]. The most
important for our purposes are:

• To: the addresses of the most important recipients

• Cc: addresses of other recipients; there is no difference in delivery to the To:
address

• Bcc: the same like Cc:, but these addresses will be deleted from the header before
delivery

• From: author of the mail

• Sender: sender of the mail, need not to be same as the From:

• Received: every MTA that forwards this mail inserts this line with information
about itself

• Return-Path: how to reply to the sender, usually only the sender’s address

Besides these, there are many other possible fields like Date:, Reply-To:, Message-Id:,
In-Reply-To:, References:, Keywords: or Subject:. Moreover new header fields may
be introduced with the string “X-“. After a blank line the body of the message follows.

6

CHAPTER 2. FOUNDATIONS 7

RFC-822 only defines a mail format with a ASCII body. MIME (Multipurpose
Internet Mail Extensions) is an extension to RFC-822 to make it possible to send emails
with a body written in an non-English alphabet or with a body which contains other data
than text. The new header fields are:

• MIME-Version: to indicate that it is a MIME-mail

• Content-Description: description of the mail content

• Content-Id: clear identifier of the mail

• Content-Transfer-Encoding: the way the body is encoded: ASCII with 7 bits
(the old way) or with 8 bits, base64 encoding for binary files, quoted-printable
encoding for ASCII-binary mixed files

• Content-Type: the type of the body: text, image, audio, video, application, mes-
sage, multipart; for each type exist several subtypes

2.1.3 Mail addresses
Most mail addresses consist of a user name, a @ symbol and a domain name. The
user name is the name of the account the user has on the server and to whose mailbox
the email will be delivered. The domain name is based on the Domain Name System
(DNS) which is defined in RFC 1034/1035[11]. The whole Internet is divided into
several domains on the highest level. Each of these top-level domains itself is divided
in many domains on the second level and so on. A hierarchy tree is built. The single
domains are separated by points. DNS-Servers change such a DNS-address into a IP-
address, which is necessary for connecting to the other host[1].

It is not necessary that a server with the specified domain name really exists. In this
case MX (mail exchange) records change the domain name into the real name of the
corresponding mail server. There may be several mail servers with different priorities
for one domain name.

2.1.4 Mail system components
An email system consists of at least three parts, the Mail User Agent, the Mail Transfer
Agent and the Mail Delivery Agents.

The Mail User Agent (MUA) can compose, edit, view and reply to messages. It
looks in the user’s mailbox for new mail, shows and archives it. It provides an editor
for writing mails, adds the mail header and forwards it to the Mail Transfer Agent.

The Mail Transfer Agent (MTA) takes the mail and is responsible for its correct
delivery. It has to prepare it, add an envelope and choose a Mail Delivery Agent for
routing it to its destination.

There are several Mail Delivery Agents (MDA) for the different kinds of mail and
the different destinations. They are responsible for the correct routing of the mail to
its destination. For example there is a MDA which delivers the local mail to the user’s
mailbox and another MDA for routing the mail to another host.

Moreover, there may be other mail system components like e.g. mailbox servers
(POP-IMAP), which are not used in this project.

CHAPTER 2. FOUNDATIONS 8

2.2 Amateur radio protocols
The most important and most used amateur radio protocol is AX.25.

2.2.1 AX.25
AX.25 is the amateur radio version of X.25. It provides link-layer communication
between stations. These may be two individual stations or an individual one and a
multi-port controller. Further on it permits multiple link-layer connections at the same
time. It covers the layers physical and data link of the ISO/OSI reference model. Each
layer can be divided in sublayers which consist of finite state machines. Any upper-
layer protocol (e.g. FTL0 or TCP/IP) may be specified independently. On the link layer
the data is transmitted in frames. There are three base types:

• Information Frame (I or UI), transmits the data

• Supervisory Frame (S), responsible for link control like acknowledging and so
on

• Unnumbered Frame (U), provides establishing and terminating link connections

Each frame itself consists of several fields, which are:

• flag, 8 bit 01111110, indicating the beginning of a frame

• address, 112/224 bit, the source and the destination of the frame

• control, 8/16 bit, the type of the frame

• PID (Protocol Identifier field, only I frame), 8 bit, indicates which layer 3 proto-
col is used

• info, 256 bit, the user data

• FCD (Frame Check Sequence field), 16 bit, a checksum for the frame

• flag, the same as above, indicating the end of the frame

AX.25 can work in a connection-oriented mode (with I frames) or in a connection-less
mode (with UI frames). It represents an error-free channel[3]. Further on each AX.25
port on a machine must be assigned a AX.25 callsign (e.g. EB4GLO).

2.3 Pacsat file protocols
All here presented Pacsat protocols require an AX.25 connection.

2.3.1 FTL0
The File Transfer Level 0[4] protocol is used for uploading and downloading files to
and from a Pacsat. It communicates with a single AX.25 connection and provides
bidirectional, full-duplex message transfer. It assumes that the Pacsat File Header for
the files to be transmitted is used. The server (satellite) is able to store the uploaded
files together with a directory entry and can forward them if a request is transmitted.

CHAPTER 2. FOUNDATIONS 9

FTL0 sends the information in packets. Each AX.25 I frame can contain one or
several FTL0 packets. A packet consists of a header and a body. The header consists
of 2 bytes and supplies the size and the type of the packet. The body may consist of
between 0 and 2047 bytes. A packet has the the following form:

<length_lsb><h1>[<info>]
<length_lsb> is an 8 bit unsigned integer providing the 8 least significant bits

of the length of <info>. The bits 7-5 of <h1> form the 3 most significant bits of
the length, the bits 4-0 encode the packet type (e.g. UPLOAD_CMD, SELECT_CMD,
DATA). No checksumming is done because it is assumed that the AX.25 link is error-
free.

FTL0 uses two state machines. One is responsible for the uploading, the other one
for downloading, selecting and directory administration. Because of this uploading
and downloading can be done simultaneously. After a LOGIN_RESP packet and the
following response LOGIN_RESP of the server the client (ground station) sends a SE-
LECT_CMD with a description of the desired files (e.g. all files with its callsign as des-
tination and not larger than 500 kB). The server responds with a SELECT_RESP direc-
tory list. Following this, the client may send a DL_CMD and the server starts transmis-
sion with DATA packets. After successful reception the client sends a DL_ACK_CMD
and the server responds with a final handshake DL_COMPLETED_RESP. The up-
loading procedure of the other state machine is similar. The client sends an UP-
LOAD_CMD and the server responds with a UL_GO_RESP if the upload is possible.
If allowed the client sends the whole file and at the end the server answers with an
UL_ACK_RESP. FTL0 can continue interrupted transfer which is necessary since it is
possible that a satellite leaves the visible range of a ground station during transmission.
The link may be closed by either the server or the client.

2.3.2 Pacsat file header
The PFH[5] is a standardized header for all files to be transmitted from or to Pacsats.
It provides full separation of the message header and the message body.

The header starts with the two constant bytes 0xaa and 0x55 to indicate a PFH
follows. Then the mandatory header follows, possibly the extended header and parts
of the optional header. After the special end item the body follows. This means the
header looks like the following:

<0xaa> <0x55> <MandatoryH> [<ExtendedH> [<OptionalItems>]]
<0x00> <0x00> <0x00>
Every header item consists of a 2-byte integer Id specifying the item, the 8-bit unsigned
length of the data and the data of the item itself. It looks like the following:

<id><length><data>
The mandatory header holds

• the file_number (4 byte), the file_name (8 byte) and the file_extension
(3 byte), all set by the Pacsat.

• the complete file_size (4 byte) indicating the size in byte, set by the upload-
ing ground station.

• the create_time and last_modified_time (4 byte), like all times in
seconds since Jan 1, 1970, set by the uploading ground station.

• a single_event_upset flag (1 byte), set by the Pacsat.

CHAPTER 2. FOUNDATIONS 10

• the file_type (1 byte), e.g. ASCII...., set by the uploading ground station.

• the body_checksum and the header_checksum and the body_offset
in byte from the beginning, set by the uploading ground station, a 16 bit check-
sum formed by adding all bytes of the header/body (ignoring overflow).

The extended header is not necessary, but recommended. If used all parts must be
present. It consists of

• the callsign of the source of the message (variable length) and the callsign of
the ax25_uploader of the message (6 byte), which may be different.

• the upload_time (4 byte), set by the Pacsat.

• the download_count (1 byte) which counts how many times a message have
been downloaded, set by the Pacsat.

• the callsign of the destination (variable length) and the callsign of the
ax25_downloader (6 byte), which also may be different.

• the download_time (4 byte), set by the Pacsat.

• the expiry_time (4 byte), after which the Pacsat may remove the message if
free space is needed, may be set by the uploading ground station.

• the priority of the message (1 byte), higher numbers indicate higher priority,
set by the uploading ground station.

Then optional items may follow.

• compression_type (1 byte) and possibly a compression_description
(variable length) if a non-standard compression is used.

• the bbs_message_type (1 byte) and the bulletin id number (variable length),
set by the uploading ground station.

• title and describing keywords of the message and a file description (all
variable length), if a non-standard file is used, set by the uploading ground sta-
tion.

• a user file_name of the message (variable length), which is used to transfer
named files, set by the uploading ground station.

For a list of the Pacsat file types and the compression types see [5].

2.3.3 Pacsat broadcast protocol
A satellite is naturally a broadcast medium. Everyone in range of the Pacsat can hear
everything. If there is a message of general interest there may be many people who
would like to download it. Using the FTL0 protocol everyone himself has to establish
a connection to the satellite which takes a considerable amount of time. With the Pacsat
Broadcast Protocol it is possible to send messages from a Pacsat to several users at the
same time.

Files, which should be broadcasted, are assigned a 32 bit unique file ID. The pro-
tocol uses the unconnected <UI> frame mode of AX.25 by dividing the file in frames.

CHAPTER 2. FOUNDATIONS 11

Each frame has sufficient information so that it can be put in the correct place and in the
correct file by the receiving ground station. Files are put in the round-robin broadcast
by the Pacsat if they are uploaded with a broadcast rotation priority. Files with a higher
priority will be sent more often. For more information about the protocol see[6].

2.3.4 Earth mail gateways
Earth mail gateways route mail over satellites. In a sytem of several earth mail gate-
ways at different places, it is important that only one gateway downloads the mes-
sage to forward it into the other earth-based network. To achieve this it is possible
to lock a download. A gateway should check first the destination field if it is able
to deliver the message. If download_time is zero it should download the mes-
sage. If a non-zero download_time and a blank ax25_downloader occurs, then
this indicates that another gateway has started a locked downloading but not yet fin-
ished. If also ax25_downloader is filled out, then the download has already been
carried out successfully. To start a locked downloading the gateway has to set the
lock_destination flag in the DOWNLOAD_CMD packet.

Chapter 3

Tools

3.1 sendmail
The gateway uses sendmail version 8.9.3.

3.1.1 Basics
sendmail is a complex and a configurable Mail Transfer Agent to receive and route
emails. It usually runs as a daemon waiting for incoming mail. Once it has received a
mail, it uses several Mail Delivery Agents (mailer) to deliver it to the correct address.
For example, mail with a local recipient address is processed by the local mailer, which
puts the mail in the corresponding mailbox. Mail, which should be sent to another host,
can be delivered for example by the SMTP (simple mail transport protocol) mailer.

sendmail is configured by the sendmail.cf file, which is read every time
that sendmail is started. Usually sendmail.cf is created by a Makefile out of the
sendmail.mc file and other configuration files (e.g. the MDA definitions). All these
files are written in M4, the GNU macro processor.

3.1.2 Smarthosts
If your host can deliver local mail but cannot look up other hosts on the Internet with
DNS, it must first send all non-local email to another host, which performs the delivery.
This host is called smart host and defined in the sendmail configuration file with:

define(’SMART_HOST’, agent:host)
Then all non-local mail will be sent to host using the mailer agent.[2]

3.1.3 Routing with mailer tables
If you wish to treat certain domains or subdomains specially, you may build a mail-
ertable. An entry in a mailertable consists of a key/value pair. The key is the domain
of the address or the subdomain with a leading point. The value is the mailer, a colon
and the host, to which it should be sent. For example this mailertable will send all mail
with destination addresses of the subdomain foo.com to the host yyy using the mailer
xxx.

12

CHAPTER 3. TOOLS 13

.foo.com xxx:yyy

3.1.4 Interfacing with a mailer
sendmail uses other programs called mailers (MDA) to deliver the mail. A new
mailer is defined in the sendmail configuration file with MAILER(mailer). The
definition itself is written in a separate file. The most important definitions are:

• the symbolic name of the mailer (M=)

• the path to the mailer program (P=)

• the arguments (A=) with which it is called, sendmail provides several macros
for this, for example the sender’s address, the recipients’ addresses or the host to
which to be sent

• several flags (F=), describing the mailer and its needs

• rewriting rules for the recipients’ addresses (R=) and for the sender’s address
(S=)

Rewriting rules change the addresses following defined rules in a form so that the
correct mailer can be chosen and so that the mailer understands them. Every rule
consists of a left-hand side value and a right-hand side value. If the address matches the
condition of the LHS value it will be replaced by the form given by the RHS value. For
building the rules sendmail provides a meta syntax and meta symbols. All addresses
run through a stream of several rulesets, which can be extended by defining own rules
with the R/S= option[2].

Once sendmail has decided which mailer to use, the set of rewriting rules is per-
formed and the mailer is executed with the given arguments. The email itself is written
to the standard input of the mailer program. Then the mailer can read the email and
deliver it.

3.2 PFH
PFH is a C program written by Rob Janssen[9]. It can add a Pacsat File Header (PFH) to
a message for uploading and can interpret a downloaded message and its PFH header.

There are five modes, which are set by command-line options:

• extract the PFH header and view the message on the display or write it to a file.

• write the PFH items of all messages in this directory in a file to get an overview
of all downloaded messages.

• the same like above, but only one message is viewed.

• sort and clean up the directory.

• create a PFH and add it to the message; prompts for header values.

CHAPTER 3. TOOLS 14

3.3 Satellite message transfer

3.3.1 Satellite tracking
As mentioned LEO satellites are only visible for nearly 15 minutes. Because of this the
track of the satellite has to be calculated to know when it is visible. There is a math-
ematical model for doing this, which needs the correct time, the exact position of the
ground station and the so called Keplerian elements. Named after Johann Kepler, these
are the seven numbers which define an ellipse. For the satellite orbit additional numbers
are introduced to compensate several influences. They can be found at www.amsat.org
or received by broadcast via satellite and should be updated every week. With these
inputs it is possible to calculate the track of the satellite. Further on during the time
when the satellite is visible and a transmission is carried out, the antennas have to be
controlled in order to provide at every time an optimal position towards the satellite.

3.3.2 Uploading/downloading tools
For the message upload and download tools are necessary. I studied two tools, WiSP
for Windows95[7] and pb/pg for Linux[8].

WiSP is a program package which provides uploading/downloading, file adminis-
tration, file creation and viewing and satellite tracking. You can write messages and
WiSP adds the PFH header and puts them in a queue for uploading. Further on WiSP
calculates the track of several satellites. If a satellite is visible, WiSP does the satellite
tracking and sends the message to the satellite. At the same time it downloads new
messages. Moreover it controls the upload and download frequency since they have to
be adjusted because of the Doppler effect. Then WiSP extracts the PFH header and
saves the message in a directory and views it.

pb/pg is a program package only for uploading and downloading. pg looks in its
working directory if there are new files to upload (files with extension .out) or files
which are only uploaded partially (.pul). It then tries to open a connection to the
satellite which is specified in the pg.conf configuration file. If successful it uploads
all files and exits. If the connection fails it tries again for a configurable time. pb is the
downloading part. It also waits until a connection to the satellite is successful. Then it
sends a directory request which is set in the autoload.dat file. Here you can specify
which files you want, e.g. your destination, a special title or keyword or a maximum
file size. These files are then downloaded and saved in the working directory with the
extension .dl. pb/pg does not provide neither file creation and viewing nor satellite
tracking nor frequency adjustment.

3.3.3 Tools used in this project
In the EHAS project both WiSP and pb/pg are used at this time. pb/pg is running
on a Linux machine, configured with an AX.25 port. It is used for uploading and
downloading of the messages. At the same time WiSP, running on another machine,
does the satellite tracking and the frequency shifting.

3.4 Linux and debian
The whole gateway is developed and tested on debian Linux, kernel version 2.2.14.
The installation and configuration of the AX.25 protocol is required.

Chapter 4

Implementation

4.1 The Pacsat mailer
The Mail Transport Agent (mailer) toPacsat can be used both in the NodoInterna-
cional and in the Centros de Salud to prepare mail messages for uploading to a Pacsat
satellite.

The mailer program itself toPacsat is based on the programPFH by Rob Janssen
[9] and adapted for the purposes of the EHAS project.

4.1.1 Interface
The mailer pacsat uses the program toPacsat to do the processing. toPacsat
is called with the callsign of the destination, the senders’s address, all the recipients’
addresses as arguments and optionally, a priority for the message. Its usage is:

toPacsat [-p priority] destination sender recipient. . .
toPacsat reads the message to be delivered from its standard input.
It has a header file called pacsat.h. This file looks like the following:

#define TMPFILE "/var/tmp/XXXXXX"
#define SPOOLDIR "/var/spool/pg"
#define ZIPCALL "/usr/bin/zip -q"
#define TITLE "EHAS message"
#define PBDIR "/var/spool/pb"
#define SENDMAILCALL "/usr/sbin/sendmail"
#define UNZIPCALL "/usr/bin/unzip -p"
TMPFILE defines the directory for all necessary temporary files, SPOOLDIR and

PBDIR define the directories of the uploader and the downloader. TITLE is a constant
which is written in the Pacsat File Header. ZIPCALL, UNZIPCALL, and SENDMAIL-
CALL define the needed system calls with appropriate arguments.

4.1.2 Implementation
First of all, toPacsat creates a unique filename for the output file to avoid mutual
exclusion problems. Then, it writes the PFH header as described in section 2.3.2 into
this file. This includes the mandatory header, the extended header and some parts of the
optional header. The message is read from its standard input and stored in a temporary
file. The envelope, which will be used by the downloading site of the gateway, is

15

CHAPTER 4. IMPLEMENTATION 16

created and the message is encapsulated in this envelope. The whole temporary file is
compressed using the program zip. This compressed file is appended to the output
file. The missing PFH header, which could not be calculated before (e.g. the checksum
of the compressed body), are written. Now the output file is put into the spool directory
of the uploading program pg. At the end, all temporary files are removed.

toPacsat contains the following procedures. The create_unique_file
function builds a file name by using a timestamp with seconds and microseconds and
additionally the process number of this toPacsat. This should always guarantee
a unique filename, even if there are several invocations of toPacsat. It gives the
extension .tmp to avoid pg from uploading the no complete file.

The function write_pfh writes all header items to the output file. The header
begins with the two characteristic constants. For each item the id, the length of the
value and the value itself are written. The value may be a specific number of zeros or
spaces for later initialization of this field or data like the actual time, the file type, the
compression type, the priority, the source and the destination callsign or the title of the
message. After writing all items, the header is terminated with constants. The source
callsign is taken from the pg.conf configuration file.

write_message_to_tmp reads the email from the stdin. A temporary file
is created using mkstemp. The envelope is then written to this temporary file. It starts
with From and the sender’s address. The second line consists of To and all recipients’
addresses. Now the complete email is copied to this file.

The compress_message function calls the compression program zip in order
to get a compressed file with the extension .zip. Here I used the option -q to put zip
in the quiet mode to produce no output. The message should be compressed to achieve
a faster transmission to and from the satellite.

append_message only copies the compressed file to the output file. A checksum
is calculated by adding all written characters.

The function write_rest fills the header with the remaining items, which are
now known like the file size, the body offset or the body checksum or now can be cal-
culated like the header checksum, which must be done at the very end. It is calculated
in the same way as the body checksum.

At the end, the clean function removes the temporary file, the zip file and changes
the extension of the output file to .out, so that pg detects it as a file to be uploaded.

toPacsat includes the pacsat.h file. It reports all errors and warnings to the
mail facility of the facility syslog. The clean function is defined as a handler for
the signals SIGTERM, SIGINT and SIGHUP. In the case of one of these signals it is
called to make sure that all temporary files are deleted.

4.1.3 Interfacing with sendmail
The mailer definition of pacsat contains the path of the mailer toPacsat, its argu-
ments, the maximum message size, the mailer flags and the rewriting rules.

The arguments are the callsign of the destination ($h macro), the sender’s address
($g macro), the recipients’ addresses ($u macro), which are needed to create an enve-
lope and optionally the priority. I used the $g flag instead of $f because it provides the
full address including the local host name.

The mailer flags are set with the option F=

• D the mailer needs a Date: line (this and the following two to maintain all infor-
mation which might be necessary later)

CHAPTER 4. IMPLEMENTATION 17

• F the mailer needs a From: line

• M the mailer needs a Message-Id: line

• h upper case should be preserved in host name (in order to maintain the correct
callsign)

• m mailer can deliver several messages to the same host on one transaction. With
this flag set, it is possible to send several emails with destination of one Cen-
tro de Salud in one satellite message. This strongly improves the time needed
to transmit all emails. In this case the $u macro will be expanded to a list of
recipients’ addresses.

The rewriting rule 55 for the sender’s address is set. Below the rewriting rule 55 is
defined[2]. RR 55 adds the full host name to the address in the From: line in order
to prevent that only a local user name is written. The left hand side (LHS) of the first
line looks to see if there is exactly one token, for example user@ would be two tokens
and not rewritten. The right hand side (RHS) adds the @ and the host name given by
the macro $j. For example user is rewritten to user@mailserver.com. The LHS of the
second line checks for any token with an following @ and the local host name (macro
$w). The RHS does the same rewriting as above. user@local will be rewritten to
user@mailserver.com. For the recipients’ addresses, no rewriting rule is necessary.

Further on the default maximum size of a message is set to 100,000.
The path of the mailer contains the full path of the binary file.

PUSHDIVERT(-1)

ifdef(‘PACSAT_MAILER_ARGS’„
‘define(‘PACSAT_MAILER_ARGS’, toPacsat $h $g $u)’)

ifdef(‘PACSAT_MAILER_PATH’„
‘define(‘PACSAT_MAILER_PATH’, /usr/local/sbin/toPacsat)’)

ifdef(‘PACSAT_MAILER_MAX’„
‘define(‘PACSAT_MAILER_MAX’, 100000)’)

POPDIVERT
####################################
PACSAT Mailer specification
####################################

VERSIONID(‘@(#)pacsat.m4 1.1 (FS) 05/16/2000’)

Mpacsat, P=PACSAT_MAILER_PATH, F=DFMhm, S=55, R=0,
M=PACSAT_MAILER_MAX, A=PACSAT_MAILER_ARGS

Rewriting Rule 55
adds full host name to local address
S55
R$- $@$1@$j user -> user@hub
R$-@$w $@$1@$j user@local -> user@hub

LOCAL_CONFIG

CHAPTER 4. IMPLEMENTATION 18

Moreover, the mailer pacsat has to be added to the sendmail configuration file
sendmail.mc.

The international gateway in the NodoInternacional has to route all emails with
destinations of one of the different Centros de Salud to the mailer pacsat. For this,
a mailertable is required. In this mailertable every possible domain of the Centros de
Salud is written together with the mailer pacsat and the corresponding host, which
is in this case the callsign of the Centro de Salud.

cs1.es pacsat:EB5GLO
cs2.es pacsat:EB6GLO

. .

. .

In the isolated gateways in the Centros de Salud every email has to be processed
by the mailer pacsat. This is achieved by setting the smarthost to the callsign of the
NodoInternacional and the corresponding mailer to pacsat with:

define(‘SMART_HOST’, ‘pacsat:EB4GLO’)dnl

4.2 The fromPacsat program
The fromPacsat program does the opposite direction of the transformation than
toPacsat. fromPacsat is also based on PFH[9] and adapted to the EHAS
project. It is used both in the NodoInternacional and in the Centros de Salud iden-
tically.

4.2.1 Interface
fromPacsat takes no arguments.

It is called periodically to check to see if new messages have arrived. Because of
this, the only necessary configuration is to add fromPacsat to the crontable. Cron is
a program which executes other programs in given intervals or at a fixed time every day,
every week, etc. This information forCron is saved in the crontable/etc/crontab.
The new crontable looks like the following:

/etc/crontab: system-wide crontab
Unlike any other crontab you don’t have to run the ‘crontab’
command to install the new version when you edit this file.
This file also has a username field, that none of the other crontabs

do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=""

m h dom mon dow user command
25 6 * * * root test -e /usr/sbin/anacron || run-parts

--report /etc/cron.daily
47 6 * * 7 root test -e /usr/sbin/anacron || run-parts

--report /etc/cron.weekly
52 6 1 * * root test -e /usr/sbin/anacron || run-parts

--report /etc/cron.monthly

CHAPTER 4. IMPLEMENTATION 19

*/15 * * * * mail /usr/local/sbin/fromPacsat
#

Now the program /usr/local/sbin/fromPacsat is called as the user mail
every 15 minutes, every hour, every day. I decided to use Cron instead of a for-
ever loop inside the program because this guarantees to be more robust. In the case
of a problem during a run, later execution is not affected. Further on, the user mail
has to be added to the list of trusted-users in order to be able to use the -f flag of
sendmail, which is described later. This is done by adding the user mail to the file
/etc/mail/trusted-users.

4.2.2 Implementation
fromPacsat searches the working directory of pb for new messages with the exten-
sion .dl, which indicates a downloaded file. This is done in a while loop until all
messages are processed. First of all, the PFH header is extracted from every message
and the checksums, given by the PFH, are saved. Following this, the remaining body,
which is the compressed message, is copied to a temporary file. The program unzip
decompresses the file and writes the result in another temporary file. From this file the
envelope is extracted and interpreted. After this, sendmail is called with addresses
of the envelope and the decompressed message. Now sendmail decides how to de-
liver the email. In most cases it will use the mailer local to pass it to one of the local
accounts, but it is also possible to use another mailer for further delivery. At the end,
all temporary files are removed.

read_pfh first checks if a Pacsat File Header follows by reading the first charac-
teristic constants. After this, for each item the id, length and the value are read. All
items except the header checksum and the body checksum are rejected because they
are no longer needed. At the end, a header checksum check is carried out.

The function copy_message_to_tmpfile creates a temporary file. Then,
the rest of the input file, which is the compressed email, is read and copied to this
temporary file. At the same time the body checksum is calculated in the same way like
in toPacsat. Again, at the end, the current checksum is compared with read one.

The decompress function creates a second temporary file. Unzip decompresses
the first temporary file and writes the output to stdout, which is redirected into the
second temporary file. This detour is necessary because the original file name, to which
unzip usually decompresses, is not known in fromPacsat.

extract_envelope reads the first two lines, which are always the envelope, of
this second temporary file. The sender’s and the recipients’ addresses are extracted.

In the functioncall_sendmail a pipe to the system call, which executessendmail
with the from and to addresses of the envelope, is opened for writing (’w’). Then, the
complete email is read from the second temporary file and copied to this pipe. The
from address in the call to sendmail is set by the flag -f, which only trusted-users are
allowed to use.

The last function clean removes the two temporary files and the input file.
As in toPacsat first the same header file is included.fromPacsat runs as

a daemon. This detaches the program from the terminal control and puts itself as a
daemon into the background. The same signal handlers as in toPacsat are installed.
All possible errors are reported to syslog, too.

CHAPTER 4. IMPLEMENTATION 20

4.3 The structure of the gateway

../image/structure.eps not found!

4.4 Installation
In choosing the right directories for all files I followed in all parts of the gateway
the Filesystem Hierarchy Standard (FHS)[10]. In this standard, the locations for di-
rectories and files of all possible types are specified. These include all temporary
files to /var/tmp, all configuration files to /etc, all files for further processing
to /var/spool/... and the binaries to /usr/local/sbin.

4.4.1 PB/PG
As mentionedpb/pg only works on the current directory. This means that the pg.conf
file has to be copied to the spool directory set in the pacsat.h file and also that pg
has to be executed here. I used the configuration file as follows:

SATELLITE UOSAT5 #the callsign of the satellite
SATNAME UO-22 # the name of the satellite
MYCALL EB4GLO # the callsign of the ground station
MAXIDLE 900 # pg waits 900s without hearing anything
MAXWAIT 0 # tries to establish the connection immediately
pg stops after MAXIDLE seconds if it does not hear anything of the satellite. Be-

cause of this it has to be started periodically. This is achieved by adding an entry in the
crontab. It can look like:

*/15 * * * * root /var/spool/pg/pg
pb also has to be executed in its spool directory, where the pb.conf file has to be

placed. It looks like:
SATELLITE HL02 # the same as above
SATNAME KO-25
MYCALL EB4GLO
MAXDAYS 5 # Files older than 5 days are ignored by pb
UDPPORT 5100 # port for controlling commands
KISSLOG yes # write a KISSLOG file

CHAPTER 4. IMPLEMENTATION 21

In contrast to pg it never stops automatically. Because of this it is sufficient to
make an entry in /etc/init.d, which starts pb every time the system is booted
(see section 4.4.2 The Makefile).

4.4.2 Pacsat gateway
The hierarchy

The main directory of the pacsat gateway has five subdirectories.

• src : the two sources toPacsat and fromPacsat, the pacsat.h file and the
pg.conf and pb.conf files

• doc : a documentation file describing the use, the installation and the test

• examples: two sendmail.mc example files for use in the NodoInternacional
and in the Centros de Salud, an example mailertable and example emails

• mailer : the pacsat.m4 mailer definition

• test : scripts for the test

The Makefile

The main targets of the Makefile are all, install and distrib.
All compiles the sources toPacsat and fromPacsat. Install installs

them in the /usr/local/sbin directory. Further on, it copies the pacsat.m4
mailer definition to /usr/share/sendmail/sendmail.cf/mailer and the
pacsat.conf file to /etc. The spool directories for pg and pb are created un-
der /var/spool and the owner is set to mail, so that the mailer is able to ac-
cess them. The spool directory of pg must have write permissions for all users be-
cause sendmail takes the sender’s name as user for the toPacsat mailer. Only
if the sender is not a local user, daemon will be used. After that, the configuration
files for pb/pg are copied to these directories. The init.d script pb is copied to
/etc/init.d and activated with update-rc.d pb defaults. This will call
pb every time the system is started. The path and the call to pb can be found in the
script pb. At the end, a symbolic link with origin in the configuration file of pg to the
/etc directory is created in order to make the gateway able to read this file. Distrib
compresses the whole directory structure to a tar distribution file.

The test

There are two different tests, one for use with satellite (gw_test_sat) and one for
use without satellite (gw_test). These tests configure the system both as NodoInter-
nacional and as Centro de Salud and send emails to each other. With them, it is possible
to check if the programs and the mailer are installed correctly and if they work. The
test with satellite implies an explicit message transfer by the satellite. The test without
satellite can be carried out in a shorter time by simulation of the satellite. Both take as
arguments :

• the from email address (sender)

• a first email address somewhere on the Internet

CHAPTER 4. IMPLEMENTATION 22

• a second email address somewhere on the Internet

• a first local address in the Centro de Salud

• a local address in the NodoInternacional

• a second local address in the Centro de Salud

To simplify the test there are the two scripts test1 and test2, corresponding to
gw_test and gw_test_sat. They already include the arguments.

The tests store the original sendmail configuration (sendmail.mc, mailertable,
local-host-names) as a backup by calling the script storeOrig. After this, the
system is configured as a Centro de Salud with the script confCS. This includes the
smart host is set to the pacsat mailer with the host argument EB4GLO, which is
the callsign of the NodoInternacional. At this point, all mail will be delivered by the
pacsat mailer. The domain cs1.es, the domain of the Centro de Salud1, is added
to the list of local-host-names. With this, all mail to cs1.es will be delivered
locally. A mailertable is not necessary since all mail except the local one has to be pro-
cessed by the smart host. The script mail_to_IN then sends different test emails to
the NodoInternacional. After sleeping 30s for delivery, the system will be configured
like a NodoInternacional with confIN. The smart host is now the usual email server.
A mailertable is created to route the emails for the Centros de Salud to the mailer
pacsat. Now the two tests differ. The test with satellite waits until the programs pg
and pb have been successfully executed, in other words until the messages have been
uploaded and re-downloaded. The test without the satellite does the same as what the
satellite would do. It moves all files from the uploader directory to the downloader
directory and changes the extension from .out to .dl. Then both tests send several
test emails with send_to_CS to the Centro de Salud. After sleeping for 15m 30s,
to make sure that cron has called fromPacsat, the system is configured again as a
Centro de Salud and the upload/download or the file moving is carried out. Again, it
waits 15m 30s and the original configuration is restored by restoreOrig.

At this point, the addresses in the Internet should have received four emails, the
local Centro de Salud addresses four emails and the local NodoInternacional address
one email.

The tests have to be executed as root since they change the sendmail configuration.

4.5 Future work
In the future the two programs pb and pg should also be adapted to the purposes of
the EHAS project. This includes the following points

• they should run as daemons in the background without the need to restart them

• they should not produce any output to the screen

• they should report to the syslog

• they should obey the FHS standard

Further on, it is desirable to do the satellite tracking also under Linux. For these two
problems I contacted the author of pb/pg and he told me that he is already working
on these two. So if a new version of pg/pb is available, it should be included to this
gateway.

Chapter 5

Programs

5.1 toPacsat
/* adds a PFH header and compresses the message */

/* copyright 1991 by PE1CHL */
/* adapted to the EHAS project by FS 2000 <fabianschulte@web.de>

*/

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <sys/time.h>
#include <unistd.h>
#include <sys/stat.h>
#include <syslog.h>
#include <stdarg.h>
#include <signal.h>

#include "pacsat.h"

/* define exit error codes */
int dir_err=1;
int file_err=2;
int zip_err=3;
int ren_err=4;

int errno,i;
unsigned int csum; /* checksum */
unsigned long fsizepos, bcsumpos, hcsumpos, boffpos, bodypos;
unsigned char ftype=0, ctype=0;
char tmp_file[256]=TMPFILE, file_without_ext[256],zip_file[256],output_file[256];

/* create unique output file name using timestamp and process id
*/

int create_unique_file()

23

CHAPTER 5. PROGRAMS 24

{
struct timeval tv;
struct timezone tz;
gettimeofday(&tv,&tz);
sprintf(file_without_ext,"%s%s%d-%d-%d",SPOOLDIR,"/",

tv.tv_sec,
tv.tv_usec,
getpid());

return 0;
}

/* write item with id, length and value */
void my_fputc(int id, int len, char* data, FILE *stream)
{
fputc((unsigned char)id,stream); /* write the item */
fputc((unsigned char)(id>> 8),stream);
fputc((unsigned char)len,stream);
fwrite(data,1,len,stream);

}

/* write the Pacsat File Header */
void write_pfh(FILE *out,char *destination, char* priority)
{
char source[16];
char s1[256],s2[156];
const char conf_file[16]="/etc/pg.conf";
FILE* conf;
char data[16];
time_t now;
int len;
unsigned long val;

/* get source callsign of pg.conf file */
if ((conf=fopen(conf_file,"r"))==NULL)

{
syslog(LOG_ERR,"%s %s%s","unable to open pg.conf file:",conf_file,"\n");
fclose(conf);
exit(2);

}
while (!feof(conf))

{
fscanf(conf,"%100s %100s\n",s1,s2);
if (!strcmp(s1,"MYCALL"))
strcpy(source,s2);

}
fclose(conf);

time(&now); /* get default time */
fputc(0xaa,out); /* PFH magic number */
fputc(0x55,out);

/* file number */
memset(data,’\0’,4);
my_fputc(0x01,4,data,out);

CHAPTER 5. PROGRAMS 25

/* file name */
memset(data,’ ’,8);
my_fputc(0x02,8,data,out);

/* file extension */
memset(data,’ ’,3);
my_fputc(0x03,3,data,out);

/* file size */
fsizepos = ftell(out) + 3;
memset(data,’\0’,4);
my_fputc(0x04,4,data,out);

/* file create time */
data[0] = (unsigned char)now; /* convert time to little-endian

*/
data[1] = (unsigned char)(now >> 8);
data[2] = (unsigned char)(now >> 16);
data[3] = (unsigned char)(now >> 24);
my_fputc(0x05,4,data,out);

/* last modified time */
memset(data,’\0’,4);
my_fputc(0x06,4,data,out);

/* file type */
memset(data,’\0’,1);
my_fputc(0x07,1,data,out);

/* SEU flag *7
ftype=1;
val = atol((char *)"10");
data[0] = (unsigned char)val;
data[1] = (unsigned char)(val >> 8);
data[2] = (unsigned char)(val >> 16);
data[3] = (unsigned char)(val >> 24);
my_fputc(0x08,1,data,out);

/* body checksum */
bcsumpos = ftell(out) + 3;
memset(data,’\0’,2);
my_fputc(0x09,2,data,out);

/* header checksum */
hcsumpos = ftell(out) + 3;
memset(data,’\0’,2);
my_fputc(0x0a,2,data,out);

/* body offset */
boffpos = ftell(out) + 3;
memset(data,’\0’,2);
my_fputc(0x0b,2,data,out);

CHAPTER 5. PROGRAMS 26

/* source callsign */
len = (int)strlen((char *)source);
my_fputc(0x10,len,source,out);

/* ax25 uploader */
memset(data,’ ’,6);
my_fputc(0x11,6,data,out);

/* upload time */
memset(data,’\0’,4);
my_fputc(0x12,4,data,out);

/* download count */
memset(data,’\0’,1);
my_fputc(0x13,1,data,out);

/* destination callsign */
len = (int)strlen((char *)destination);
my_fputc(0x14,len,destination,out);

/* ax25 downloader */
memset(data,’ ’,6);
my_fputc(0x15,6,data,out);

/* download time */
memset(data,’\0’,4);
my_fputc(0x16,4,data,out);

/* expire time */
memset(data,’\0’,4);
my_fputc(0x17,4,data,out);

/* priority */
val = atol((char *)priority); /* get value of decimal input */
data[0] = (unsigned char)val; /* convert to little-endian */
data[1] = (unsigned char)(val >> 8);
data[2] = (unsigned char)(val >> 16);
data[3] = (unsigned char)(val >> 24);
my_fputc(0x18,1,data,out);

/* compression type */
ctype=2;
data[0] = (unsigned char)atoi((char *)"2");
my_fputc(0x19,1,data,out);

/* title */
my_fputc(0x22,strlen(TITLE),TITLE,out);

fputc(0,out); /* terminate PFH */
fputc(0,out);
fputc(0,out);

/* get body offset */
bodypos = ftell(out);

CHAPTER 5. PROGRAMS 27

}

/* read message and write it to a temporary file */
int write_message_to_tmp(int argc, char **argv,int offset)
{
int j,len;
char data[1024];
FILE *tmp_out;

/* make and open temp file */
mkstemp(tmp_file);
tmp_out=fopen(tmp_file,"w+b");
if (tmp_out == NULL)

{
syslog(LOG_ERR,"%s %s %d%s","unable to open temporary file:",tmp_file,errno,"\n");
fclose(tmp_out);
return file_err;

}
/* write envelope */
fwrite("From ",1,5,tmp_out);
fwrite(argv[offset+1],1,(int)strlen(argv[offset+1]),tmp_out);
fwrite("\nTo",1,3,tmp_out);
for (j=offset+2;j<argc;j++)

{
fwrite(" ",1,1,tmp_out);
fwrite(argv[j],1,(int)strlen(argv[j]),tmp_out);

}
fwrite("\n",1,1,tmp_out);
/* write message */
do

{
len=(int)fread(data,1,sizeof(data),stdin);
fwrite(data,1,len,tmp_out);

}
while (feof(stdin)==0);
fclose(tmp_out);
return(0);

}

/* compress message using zip */
int compress_message()
{
int zip_value;
char complete_call[256];

strcpy(zip_file,tmp_file);
strcat(zip_file,".zip");
sprintf(complete_call,"%s %s %s",ZIPCALL,zip_file,tmp_file);
zip_value=system(complete_call);
if (zip_value!=0 && zip_value!=2)

{
syslog(LOG_ERR,"%s %d%s","error while compressing using zip:",zip_value,"\n");
return zip_err;

}

CHAPTER 5. PROGRAMS 28

}

/* write compressed message into output file */
void append_message(FILE *out)
{
FILE *zip_in;
int len;
unsigned char data[2048];

zip_in=fopen(zip_file,"r+b");
csum=0;
do

{
len=(int)fread(data,1,sizeof(data),zip_in);
fwrite(data,1,len,out);
while (len>0) csum+=data[--len];

}
while(feof(zip_in)==0);
fclose(zip_in);

}

/* write the last items */
int write_rest(FILE *out)
{
/* store total file size */
unsigned long val;

val = ftell(out);
fseek(out,fsizepos,0);
fputc((unsigned char)val,out);
fputc((unsigned char)(val >> 8),out);
fputc((unsigned char)(val >> 16),out);
fputc((unsigned char)(val >> 24),out);

/* store calculated body checksum */

fseek(out,bcsumpos,0);
fputc((unsigned char)csum,out);
fputc((unsigned char)(csum >> 8),out);

/* set correct body offset */

fseek(out,boffpos,0);
fputc((unsigned char)bodypos,out);
fputc((unsigned char)(bodypos >> 8),out);

/* calculate header checksum */

csum = 0;
fseek(out,0L,0);

while (bodypos-- > 0)
csum += fgetc(out);

CHAPTER 5. PROGRAMS 29

/* store calculated header checksum */

fseek(out,hcsumpos,0);
fputc((unsigned char)csum,out);
if (fputc((unsigned char)(csum >> 8),out)==EOF)

{
syslog(LOG_ERR,"%s\n","error while writing file");
return file_err;

}
fclose(out);
return 0;

}

/* remove temp files and rename output file */
void clean()
{
if (remove(tmp_file)!=0)

syslog(LOG_WARNING,"%s %s %d%s","error while removing",tmp_file,errno,"\n");
if (remove(zip_file)!=0)

syslog(LOG_WARNING,"%s %s %d%s","error while removing",zip_file,errno,"\n");
if (rename(output_file,strcat(file_without_ext,".out"))!=0)

{
syslog(LOG_ERR,"%s %s %d%s","unable to rename file",file_without_ext,errno,"\n");
exit(ren_err);

}
}

/* main takes the destination callsign, the from and all to addresses
as arguments and optional the priority with -p xxx */

int main(int argc, char **argv)
{
int error;
char priority[1];
FILE *out;

/* open log connection */
openlog(argv[0],LOG_PID,LOG_MAIL);
/* get priority */
i=1;
strcpy(priority,"0"); /* default */
while (argv[i][0]==’-’)

{
if (argv[i][1]==’p’)
strcpy(priority,argv[++i]);

i++;
}

if ((error=create_unique_file())!=0)
{

clean(0);
exit(error);

}
/* open file */
sprintf(output_file,"%s%s",file_without_ext,".tmp");

CHAPTER 5. PROGRAMS 30

if ((out = fopen(output_file,"w+b")) == NULL)
{

syslog(LOG_ERR,"%s %s %d%s","could not open outputfile:",output_file,errno,"\n");
fclose(out);
clean(0);
exit(file_err);

}
write_pfh(out,argv[i],priority);
if ((error=write_message_to_tmp(argc,argv,i))!=0)

{
clean(0);
exit(error);

}
if ((error=compress_message())!=0)

{
clean(0);
exit(error);

}
append_message(out);
if ((error=write_rest(out))!=0)

{
clean(0);
exit(error);

}
clean(0);
syslog(LOG_INFO,"%s %s %s%s","file",file_without_ext,"created

correctly","\n");
closelog();
return(error);

}

5.2 fromPacsat
/* extract email from PFH file and delivers it */

/* copyright 1991 by PE1CHL */

/* adapted to the EHAS Project 2000 by FS <fabianschulte@web.de
*/

#include <stdio.h>
#include <time.h>
#include <syslog.h>
#include <sys/types.h>
#include <dirent.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>

#include "pacsat.h"

CHAPTER 5. PROGRAMS 31

/* define exit error codes */
int file_err=1;
int nopfh_err=2;
int dir_err=3;
int env_err=4;
int unzip_err=5;
int sm_err=6;
int errno;

int bsum; /* body checksum */

char tmp_file1[256]=TMPFILE;
char tmp_file2[256]=TMPFILE;
char complete_file[256]; /* input file */

/* read the pfh and do checksum calc */
int read_pfh(FILE *inp)
{
unsigned char data[2048]; /* buffer */
unsigned long val;
unsigned int hsum,csum; /* header checksum and counter for checksum

*/
int id, id2, len, i;

/* check magic number AA55 */
if (fgetc(inp) != 0xaa || fgetc(inp) != 0x55)

{
syslog(LOG_ERR,"%s\n","no Pacsat header file");
fclose(inp);
return nopfh_err;

}
csum = 0xaa + 0x55;

/* read header items */
while ((id = fgetc(inp)) != EOF &&

(id2 = fgetc(inp)) != EOF &&
(len = fgetc(inp)) != EOF)

{
csum += id + id2 + len; /* update header

checksum */
id |= id2 << 8;
if (id == 0 && len == 0) /* end of header? */
break;

if (fread(data,1,len,inp) != len) /* read data */
break;

data[len] = ’\0’;
if (len <= 4)
{

val = 0;
for (i = 0; i < len; i++)

val |= (unsigned long) data[i] << (8 * i);
}

/* special treatment for some header items */
switch (id)

CHAPTER 5. PROGRAMS 32

{
case 0x0a: /* header checksum

*/
hsum = (unsigned)val; /* get it’s value */
break; /* and don’t update

csum */
case 0x09: /* body checksum

*/
bsum = (unsigned)val; /* get value & update csum

*/
default:

for (i = 0; i < len; i++)
csum += data[i]; /* update header checksum

*/
break;

}
}

/* checksum error ? */
if (hsum != csum)

syslog(LOG_WARNING,"%s %d\n","header checksum error:",csum);
return 0;

}

/* read the message and copy it to tmp outputfile */
int copy_message_to_tmpfile(FILE* inp)
{
unsigned char data[2048]; /* buffer */
int len, i;
unsigned int csum=0;
FILE *out; /* file stream

for tmp file */

/* create temporary outputfile */
mkstemp(tmp_file1);
if ((out = fopen(tmp_file1,"wb")) == NULL)

{
syslog(LOG_ERR,"%s %s %d%s","could not open output file",tmp_file1,errno,"\n");
fclose(inp);
return file_err;

}
/* copy rest of inputfile to outputfile */
while ((len = (int)fread(data,1,sizeof(data),inp)) != 0) /* read

data */
{

for (i = 0; i < len; i++)
{

csum += data[i]; /* calc checksum */
}

if (fwrite(data,1,len,out) != len) /* write to output
*/

{
syslog(LOG_ERR,"%s %s %d%s","error while writing to outputfile",tmp_file1,errno,"\n");
return file_err;

}

CHAPTER 5. PROGRAMS 33

}
/*checksum error ?*/
if (bsum != csum)

syslog(LOG_WARNING,"%s %d%s","body checksum error:",csum,"\n");
fclose(out);

return 0;
}

/* decompress message */
int decompress()
{
int unzip_value;
char complete_call[256];

/* create temp outputfile2 */
mkstemp(tmp_file2);
sprintf(complete_call,"%s %s %s%s",UNZIPCALL,tmp_file1,">",tmp_file2);
/* call unzip */
unzip_value=system(complete_call);
if (unzip_value!=0 && unzip_value!=1)

{
syslog(LOG_ERR,"%s %d%s","error while decompressing using

unzip:",unzip_value,"\n");
return unzip_err;

}
return 0;

}

/* extract envelope of message */
void extract_envelope(FILE *inp, char *sender, char *recipients)
{
char line1[256], line2[4096];
/* extract sender’s and recipients’ addresses */
fgets(line1,256,inp);
strcpy(sender,line1+5);
sender[strlen(sender)-1]=’\0’;
fgets(line2,4096,inp);
strcpy(recipients,line2+3);
recipients[strlen(recipients)-1]=’\0’;

}

/* call sendmail with message */
int call_sendmail(char *sender, char *recipients, FILE *inp)
{
FILE *sm_inp; /* descriptor for pipe */
int i;
char complete_call[256];

/* call sendmail */
sprintf(complete_call,"%s %s%s %s",SENDMAILCALL,"-f",sender,recipients);
/* open pipe */
sm_inp=popen(complete_call,"w");
if (sm_inp==NULL)

{

CHAPTER 5. PROGRAMS 34

syslog(LOG_ERR,"%s","error while calling sendmail\n");
return sm_err;

}
/* copy message to pipe of sendmail */
while((i=fgetc(inp))!=EOF)

fprintf(sm_inp,"%c",i);
pclose(sm_inp);
return 0;

}

/* remove all files */
void clean(int i)
{
/* remove temporary files */
if (remove(tmp_file1)!=0)

syslog(LOG_WARNING,"%s %s %d%s","error while removing",tmp_file1,errno,"\n");
if (remove(tmp_file2)!=0)

syslog(LOG_WARNING,"%s %s %d%s","error while removing",tmp_file2,errno,"\n");
remove(complete_file);

}

int main (int argc, char **argv)
{
struct dirent *dir_entry;
FILE *inp, *inp2;
DIR *dir_stream; /* directory descriptor

*/
char sender[256],recipients[4096];
int error=0;

/* set program in daemon mode */
daemon(1,1);
/* install signal handler */
/*signal(SIGTERM,clean(int));
signal(SIGINT,clean(int));
signal(SIGHUP,clean(int));*/
/* open log connection */
openlog(argv[0],LOG_PID,LOG_MAIL);
/* open spool directory and look for downloaded files */
dir_stream=opendir(PBDIR);
if (dir_stream==NULL)

{
syslog(LOG_ERR,"%s %s %s%s","could not open pb-directory",PBDIR,errno,"\n");
clean(0);
exit(dir_err);

}
dir_entry=readdir(dir_stream);
while (dir_entry!=NULL)

{
/* search completely downloaded files .dl */
if (strstr(dir_entry->d_name,".dl")!=NULL)
{

bsum=0;
sprintf(complete_file,"%s%s%s",PBDIR,"/",dir_entry->d_name);

CHAPTER 5. PROGRAMS 35

/* open inputfile */
if ((inp = fopen(complete_file,"rb")) == NULL)

{
syslog(LOG_ERR,"%s %s %d%s","could not open input

file", complete_file,errno,"\n");
clean(0);
exit(file_err);

}
if ((error=read_pfh(inp))!=0)

{
clean(0);
exit(error);

}
if ((error=copy_message_to_tmpfile(inp))!=0)

{
clean(0);
exit(error);

}
fclose(inp);
if ((error=decompress())!=0)

{
clean(0);
exit(error);

}
if ((inp2 = fopen(tmp_file2,"r")) == NULL)

{
syslog(LOG_ERR,"%s %s %d%s","could not open input

file",tmp_file2,errno,"\n");
clean(0);
exit(file_err);

}
extract_envelope(inp2, sender, recipients);
if ((error=call_sendmail(sender, recipients, inp2))!=0)

{
clean(0);
exit(error);

}
fclose(inp2);
clean(0);

}
dir_entry=readdir(dir_stream);

}
closedir(dir_stream);
closelog();
return error;

}

5.3 The test scripts
The test1 script:

#!/bin/sh

CHAPTER 5. PROGRAMS 36

./gw_test you@your.domain a@internet.domain b@internet.domain c@CS1
d@IN e@cs1;

The test2 script:
#!/bin/sh
./gw_test_sat you@your.domain a@internet.domain b@internet.domain

c@CS1 d@IN e@cs1;

The gw_test script:
#!/bin/sh
echo Usage: gw_test myaddress Internetaddress1 Internetaddress2

CS1address1 INaddress CS1address2;
echo PacsatMailGateway test without uploading/downloading;
echo These test will take about 3 minutes, please wait.....;
./store_orig;
./confCS;
./mail_to_IN $1 $2 $3 $4;
sleep 30s;
./confIN;
for a in ‘ls /var/spool/pg‘;
do

if [$a != “pg.conf”]
then

b=‘echo $a | sed ’s/.out/.dl/g’‘;
‘mv /var/spool/pg/$a /var/spool/pb/$b‘;

fi
done
./mail_to_CS $1 $2 $4 $6 $5;
sleep 1m 30s;
./confCS;
for a in ‘ls /var/spool/pg‘;
do

if [$a != “pg.conf”]
then

b=‘echo $a | sed ’s/.out/.dl/g’‘;
‘mv /var/spool/pg/$a /var/spool/pb/$b‘;

fi
done
sleep 1m 30s;
./restore_orig

The gw_test_sat script:
#!/bin/sh
echo Usage: gw_test_sat myaddress Internetaddress1 Internetaddress2

CS1address1 INaddress CS1address2;
echo PacsatMailGateway test with uploading/downloading;
./store_orig;
./confCS;
./mail_to_IN $1 $2 $3 $4;
sleep 30s;
./confIN;
echo Now start uploading with pg and downloading with pb and after

press Return;

CHAPTER 5. PROGRAMS 37

read;
./mail_to_CS $1 $2 $4 $6 $5;
sleep 15m 30s;
./confCS;
echo Now start uploading with pg and downloading with pb and after

press Return;
read;
sleep 15m 30s;
./restore_orig;

The confCS script:
#!/bin/sh
cp ../examples/sendmailCS.mc /etc/mail
mv /etc/mail/sendmailCS.mc /etc/mail/sendmail.mc
rm /etc/mail/mailertable
touch /etc/mail/mailertable
cp ../examples/local-host-names /etc/mail
sendmailconfig

The confIN script:
#!/bin/sh
cp ../examples/sendmailIN.mc /etc/mail
mv /etc/mail/sendmailIN.mc /etc/mail/sendmail.mc
cp ../examples/mailertable /etc/mail/mailertable
rm /etc/mail/local-host-names
touch /etc/mail/local-host-names
sendmailconfig

The mail_to_IN script:
#!/bin/sh
sendmail -f$1 $2 $3 <../examples/mail1
sendmail -f$1 $2 $4 <../examples/mail2

The mail_to_CS script:
#!/bin/sh
sendmail -f$1 $2 <../examples/mail3
sendmail -f$1 $3 $4 <../examples/mail4
sendmail -f$1 $3 $5 <../examples/mail4

The storeOrig script:
#!/bin/sh
mv /etc/mail/sendmail.mc /etc/mail/sendmail.mc.orig
mv /etc/mail/mailertable /etc/mail/mailertable.orig
mv /etc/mail/local-host-names /etc/local-host-names.orig

The restoreOrig script:
#!/bin/sh
mv /etc/mail/sendmail.mc.orig /etc/mail/sendmail.mc
mv /etc/mail/mailertable.orig /etc/mail/mailertable
mv /etc/mail/local-host-names.orig /etc/local-host-names

Bibliography

[1] Computer Networks, 3rd edition, Andrew S. Tanenbaum, Prentice Hall, 1996

[2] sendmail by Bryan Costales O’Reilly & Associates, Inc. 1993

[3] AX.25 Link Access Protocol for Amateur Packet Radio V2.2, 11/11/1997 by Tuc-
son amateur Radio Corporation

[4] Pacsat protocol: File Transfer Level 0 by Jeff Ward, Harold E. Price, available at
http://www.amsat.org/amsat/sats/nk6k/msatpro.html

[5] Pacsat File Header definition by Jeff Ward, Harold E. Price, available at
http://www.amsat.org/amsat/sats/nk6k/msatpro.html

[6] Pacsat Broadcast Protocol by Harold E. Price and Jeff Ward, available at
http://www.amsat.org/amsat/sats/nk6k/msatpro.html

[7] WiSP for Windows95/NT, available at http://www.amsat.org

[8] pb/pg 1.4. by Bent Bagger, available at http://www.amsat.org

[9] PFH by Rob Janssen 1991

[10] Filesystem Hierarchy Standard 2.1 edited by Daniel Quinlan, available at
http://www.pathname.com/fhs

[11] RFC (Request for comment) standard archive: e.g. http://www.faqs.org/rfcs

38

